XSS attacks

Definition

XSS (Cross-Site Scripting) attacks are security vulnerabilities in web applications where an attacker
injects malicious scripts into trusted websites, allowing them to execute arbitrary code in the
victim's browser. This can lead to unauthorized access, data theft, cookie hijacking, and website
defacement.

*Classic example : An attacker submits a comment on a forum with a malicious script embedded in
it with

<script>
/lget user's cookie

</script>

When other users view the comment, the script gets executed in their browsers, giving the
attacker access to their sensitive information or allowing them to perform actions on their behalf.*

Security risks

Security risks associated with XSS attacks include:

1. Data theft: Attackers can steal sensitive information, such as login credentials, personal
data, or financial details, from users who unknowingly execute the malicious scripts.

2. Cookie hijacking: By injecting scripts, attackers can access or manipulate user cookies,
leading to session hijacking or impersonation.

3. Session riding: Attackers can exploit XSS vulnerabilities to piggyback on authenticated
sessions and perform actions on behalf of users, leading to unauthorized access and
privilege escalation.

4. Malware distribution: Attackers can use XSS to deliver malware or malicious payloads
to unsuspecting users, leading to system compromise or further attacks.

5. Phishing attacks: XSS vulnerabilities can be leveraged to create convincing phishing
pages or pop-ups, tricking users into disclosing sensitive information or installing



malicious software.

How to prevent it

There is 3 solutions that can be used altogether to prevent XSS attacks :

e Input validation: Validate and sanitize all user input on the server-side to ensure it does
not contain malicious code or script tags.

All user’s input, event file’s name must be sanitized.

e Output encoding: Encode user-generated content before displaying it on web pages to
prevent the browser from interpreting it as executable code. Apply appropriate encoding
based on the context in which the output is being used (e.g., HTML, JavaScript, CSS) to
prevent script injection.

Always use your framework var injection with {} which encode for you the variable
content.

Obviously, never inject your variables in dangerouslySetinnerHTML unless you want to inject js,
that cannot be controlled by the user. But it is really not recommended.

e Content Security Policy (CSP): Implement a robust CSP that restricts the types of
content allowed to be loaded on a web page, limiting the potential sources of XSS attacks.
Here, we inform the browser that the only source able to load js will be your website's
subdmain.

Adapt this header with your specifics needs :

Content-Security-Policy: script-src 'self' *.example.com;

Revision #2
Created 12 April 2024 03:42:56 by Seaweedbrain
Updated 12 April 2024 03:58:32 by Seaweedbrain



